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Abstract

Aims

Since 2000, the environmental flow controls project has been imple-

mented in the lower Heihe River Basin, a typical arid inland river

basin in northwest China, to restore the deteriorated ecological en-

vironment in this region. The aim of this study was to explore the

impacts of groundwater fluctuations on vegetation dynamics. Our

results can be used as a reference for water resources planning

and management to maintain proper environmental flows in arid

areas.

Methods

The location (by Global Positioning System) and depth of the mon-

itoring wells, as well as groundwater table depth and salinity were

measured in situ at each site from July to August 2009. Based on the

measurements of the groundwater table depth and salinity following

the implementation of environmental flow controls project (EFCP) in

the lower Heihe River Basin, the groundwater fluctuations during the

period from 2001 to 2009 were analyzed. Descriptive statistics and

Pearson’s correlation were used to analyze the relationship between

vegetation changes and groundwater table fluctuations. Additionally,

the spatial distributions of the groundwater table depth and salinity

were interpolated using the simple kriging method. Trend analysis

was applied to the time series of integrated Moderate Resolution Im-

aging Spectroradiometer normalized difference vegetation index

data to identify interannual vegetation dynamics. The relationship

between vegetation status and groundwater environment was inves-

tigated at different spatial scales by analyzing and comparing the

time series and trends.

Important Findings

(i) The groundwater table and salinity increased significantly in most

of the study area with spatial heterogeneity. On average, the ground-

water table rose ;0.5 and 1.5 m in the upper and lower Ejina Basin,

respectively, and the groundwater salinity increased across the study

area by 0–4%. (ii) A notable correlation between the vegetation sta-

tus and the groundwater table was revealed when the groundwater

table depth fluctuated between 1.8 and 3.5 m, whereas the vegeta-

tion did not show an obvious response to groundwater table changes

when the groundwater table depth was more than 5–6 m. (iii) Veg-

etation restoration mainly occurred in riparian areas within 500–1

000 m of from natural rivers, where the groundwater table depth var-

ied from 2 to 4 m, and salinity was <5%, whereas vegetation

degradation appeared at some locations where groundwater envi-

ronment had deteriorated.
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INTRODUCTION

The spatio-temporal dynamics of vegetation in arid and semi-

arid regions are largely determined by water availability

(Li et al. 2001). Groundwater is an important water source

for many plants, particularly in arid and semi-arid regions,

where groundwater supports a great density of vegetation

by providing additional water for plant growth and
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transpiration (Naumburg et al. 2005). In addition, groundwa-

ter, as a component of total water resources, plays a dominant

role in environmental protection (Zhu et al. 2004). Under-

standing the responses of vegetation dynamics to groundwater

fluctuations is crucial for the sustainable improvement of eco-

systems in arid regions (Wu and Hobbs 2002).

In arid and semi-arid regions, where the rainfall is particu-

larly scarce, the direct effects of precipitation on plant function-

ing are very weak (Elmore et al. 2006). Therefore, the natural

vegetation in these areas is mainly distributed along rivers or

where the groundwater maintains an appropriate depth and

salinity to allow for plant growth. In recent years, regional

groundwater declines have threatened many riparian ecosys-

tems in the arid and semi-arid regions of the world (Stromberg

et al. 1996). Vegetation–groundwater interactions are becom-

ing the focus of renewed interest related to the effects of

groundwater fluctuations on plants and vegetation communi-

ties (Maitre et al. 1999). Recent studies have produced more

and increasingly precise information on the response of veg-

etation cover and ecosystem functioning to groundwater fluc-

tuations in arid and semi-arid regions. For example, Stromberg

et al. (1996) investigated the changes in riparian vegetation

due to declining groundwater levels in semi-arid regions

and predicted that further declines in groundwater levels

would cause a sequential ‘desertification’ of the riparian flora.

Munoz-Reinoso (2001) reported a trend toward more xero-

phytic communities due to vegetation changes in response

to a decline in groundwater level and a decrease in water avail-

ability from 1970 to 2000 in the Donana National Park, Spain.

Using a 16-year record of plant cover derived from satellite

data, Elmore et al. (2006) found that the plant community

in the Owens Valley, USA, was groundwater dependent; how-

ever, with extensive groundwater declines, the vegetation

cover became weakly correlated with the groundwater level,

particularly after the groundwater level declined below the av-

erage plant rooting depth (;2.5 m).

In the arid regions of northwestern China, where the use of

land andwater resources has been significantly increased since

the 1950s, the lower basins faced serious environmental

deterioration and ecosystem degradation, such as the dry up

of rivers and lakes, declines in groundwater levels and desert-

ification (Feng and Cheng 1998; Wang and Cheng 1999). To

restore the ecosystems in these regions, surface water has been

transported from upper-middle to lower basins in the last 10

years (Chen et al. 2006, 2010). Impacts of fluctuations in

groundwater levels on riparian vegetation along the Tarim

River in western China have been reported in previous studies

(Chen 2004; Chen et al. 2006, 2010; Kong et al. 2009; Pang et al.

2010). Based on the result of field campaign along 15 transects

in the lower Tarim River, Chen (2004) concluded that

the groundwater table depths at which Phragmites communis,

Tamarix spp. and Populus euphratica began to experience stress

were 3.5, 5 and 4.5 m, respectively. Using the field data from

40 monitoring wells and 18 vegetation survey plots during the

period from 2000 to 2002, Chen et al. (2006) found that the

groundwater level played a dominant role in determining

plant species diversity in the lower Tarim River Basin. Kong

et al. (2009) quantified the spatio-temporal variations of veg-

etation and landscape patterns related to groundwater fluctu-

ations by analyzing Landsat TM images of the Tarim Basin in

western China for 1986, 1999 and 2004. Pang et al. (2010) in-

vestigated riparian groundwater recharging and evolution in

the middle Tarim by analyzing tritium, stable isotopes and wa-

ter chemistry data. They confirmed the relationship between

groundwater and ecosystems in this arid area. Based on a field

investigation of groundwater table depth and plant species

abundance along nine transects crossing the Tarim River,

Chen et al. (2010) showed that damaged arid ecosystems were

restored as far as 850 m from the river bank after considerable

increases in the water level.

The Heihe River is the second largest inland river in

northwestern China. In the last 50 years, increased water

diversions from the Heihe River for irrigation in its middle rea-

ches has triggered a series of ecological problems, including the

disappearances of terminal lakes and a severe decline of the

groundwater level in its lower basin (Chen et al. 2005; Feng

and Cheng 1998; Feng et al. 2001; Wang and Cheng 2000;

Zhu et al. 2004). Declines in the groundwater level have caused

large areas of vegetation to die-off and have led to ecological

deterioration and the desertification of the Ejina Oasis, which

plays a protective role in blocking sandstorms in northwest

China (Guo et al. 2009). Several studies have addressed the is-

sue of fluctuations in groundwater levels and salinity, which

affect plant growth indirectly or directly (Feng et al. 2004;Wen

et al. 2005). Groundwater level variations of the Ejina region

have been simulated in recent years based on experimental

observation data (Xi, Feng, Liu, et al. 2009). Feng et al.

(2004) investigated the distribution and evolution of water

chemistry in the Heihe Basin and concluded that since the

1960s, large volume of the river water diverted for irrigation

has been found to re-emerge as spring water at the edge of al-

luvial fans and then reintegrate into the Heihe River. After

a number of reuses and re-emergences in the middle reaches

of this river, the mineralization and ionic composition of the

river water has doubled. Wen et al. (2005) found that salinity

levels in groundwater were highly variable, with significant

zonation from the recharge to the discharge area.

A number of studies on vegetation changes following the

implementation of emergency water diversion in the lower

Heihe River Basin have also been conducted in recent years

(Guo et al. 2009; Jin et al. 2008, 2010; Wang et al. 2001). An

increasing trend of vegetation growth was found in the lower

East River basin based on annual regional-mean normalized

difference vegetation index (NDVI) data from 2000 to 2006,

and the status of the vegetation was highly correlated with

the preceding year’s run-off entering the Ejina Basin (Jin

et al. 2008, 2010). Previous field investigations have shown

a clear relationship between vegetation coverage and ground-

water table depth in the Ejina Oasis: when the groundwater

table depth declines from 1 to 5 m, the vegetation coverage
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accordingly decreases from 80% to 10% (Wang et al. 2001).

Guo et al. (2009) showed that the vegetation grew remarkably

well 100–400 m away from the water channel and around ter-

minal lakes, and the growth rates decreased with the distance

from the water body, based on field survey data from 2001 to

2005. The above-mentioned studies have involved groundwa-

ter characteristics related to the water cycle and vegetation

changes in the ecosystems in the lower Heihe River Basin.

However, very few studies have been focused on the impact

of groundwater fluctuations on the succession and change

in coverage of vegetation in this region. Because groundwater

is an important ecological factor in arid regions and under-

standing the responses of vegetation dynamics to groundwater

fluctuations is crucial for the sustainable improvement of eco-

systems in arid regions, the purpose of this study was to reveal

the dependence of vegetation on groundwater and the effects

of groundwater fluctuations on vegetation dynamics in regions

of water limitation.

THE STUDY AREA

The lower Heihe River Basin (Ejina Basin) covers an area of 3

3 104 km2 in northwest China, extending between 40�20#–
42�30#N and 99�30#–102�00#E (Li et al. 2001; Zhang et al.

2005) (Fig. 1). This region is characterized by a continental cli-

mate that is extremely hot in the summer and severely cold in

the winter (Xie 1980). The mean annual temperature is;8�C,
with a maximum temperature of 41�C (July) and a minimum

of �36�C (January). The mean annual precipitation is only 42

mm and the mean potential evaporation rate is 2 300–3 700

mm/year (Wen et al. 2005). The topography of the basin

inclines from southwest to northeast, with an average slope

of 1–3&, and the land surface elevation varies from 1 127

to 820 m (Akiyama et al. 2007). The dominant landscape of

the Ejina Basin is the Gobi Desert, which is composed of

wind-eroded hilly land, desert and alkaline soils. The limited

vegetation that exists in the region is distributed along the

Heihe River and relies on shallow groundwater for sustenance

(Akiyama et al. 2007; Feng et al. 2004; Xie 1980).

The Heihe River, originating in the Qilian Mountain, flows

through the Ejina Basin and splits into two branches at Lang-

xinshan (Fig. 1). The two branches of the Heihe River flow to

the East andWest Juyan Lakes, respectively; the total length of

the two branches in the basin is ;240 km (Feng et al. 2001).

Before entering the terminal lakes, the East River and West

River forms several tributaries, including the Nolin River,

the Longzi River and the Andu River (Fig. 1). The Heihe River

is the main recharge source for the groundwater system, and

;68% of the groundwater recharge in the Ejina alluvial fan

occurs through vertical percolation from theHeihe River (Feng

et al. 2004; Wen et al. 2005; Wu and Hobbs 2002; Wu et al.

2002). In general, shallow groundwater flows from south

to northeast across the basin and separates into two flow

directions: one toward the Juyan Lakes and the other toward

Gurinai (Si et al. 2009; Wen et al. 2005; Xie 1980). The mech-

anisms of groundwater discharge are evaporation (accounting

for more than 90% of the total discharge), transpiration and

groundwater withdrawal (Feng et al. 2004; Si et al. 2009; Xi,

Feng, Liu, et al. 2009; Xi, Feng, Si, et al. 2009; Xie 1980).

The Ejina Oasis is located along these rivers on the alluvial

fan and is encompassed by peripheral desert, including Gobi

and sandy desert. The predominant natural vegetation in oasis

includes P. euphratica, T. ramosissima, H. ammodendron and

Sophora alopecuroides. Sparse xerophilic vegetation, such as

Nitraria tangutorum Bobr, also exists in the study area. The pre-

dominant vegetation in the study area, which is characterized

by species such as P. euphratica, T. ramosissima and

S. alopecuroides, mainly relies on groundwater for sustenance

(Guo et al. 2009; Zhu et al. 2009). In recent decades, over-

extraction of the groundwater has caused a decline in the

water table, resulting in the withering of large areas of

P. euphratica, thus creating a highly visible indicator of ecolog-

ical change and desertification in the Ejina Basin (Guo et al.

2009). Under the combined effects of climate change and

human activities, the groundwater level in the Ejina Basin

had continued to decrease before 2000, thus causing further

degradation of vegetation and desertification of the Ejina Basin

(Feng et al. 2004).

To restore the seriously degraded ecosystem in the lower

Heihe River Basin, ‘Integrated Water Resource Management

of the Heihe River Basin’ was conducted by the Heihe River

Bureau in 2000 (Guo et al. 2009). As a part of this larger con-

servation plan, the EFCP has been implemented since 2000 for

limiting a certain amount of river water (9.5 3 108 m3/year)

into the lower Heihe River Basin to protect the Ejina Oasis

from deterioration (Guo et al. 2009; Jin et al. 2008, 2010; Wang

et al. 2001). According to observations at the Langxinshan Hy-

drologic Station, annual run-off increased from 1.8 3 108 m3

in 2001 to 7.5 3 108 m3 in 2003 and continued to increase

since then (Fig. 2). The total volume of annual river run-

off into East Juyan Lake, which dried up in 1992, was

2.583 108m3 from 2000 to 2008 and reached amaximal water

surface of 35.7 km2 in 2004 (Guo et al. 2009). The surface

water of Heihe River reached West Juyan Lake, which dried

up in 1961, only in 2003, with a volume of 2.7 3 107 m3

(Guo et al. 2009).

MATERIALS AND METHODS

To assess the change of the groundwater environment in the

study area, the groundwater dynamics was studied from 2000

to 2009 by analyzing the water table depth and salinity from

four groups of water sampling points: groups A, B, C and D

(Fig. 3). A field campaign was conducted in July and August

2009, during which groundwater table depths were measured

at 77 wells. In addition, groundwater salinity was analyzed in

situ using a HANNAHI 98188 waterproof, portable Conductiv-

ity Meter at 92 regularly pumped (drinking, irrigation and
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industrial) wells or boreholes (group A in Fig 3). Another field

campaignwas conducted by LixinWang and Yushu Zhang (In-

stitute of Geographic Sciences and Natural Resources Re-

search, Chinese Academy of Sciences) in September 2001

from 59 wells (group B in Fig 3), including groundwater table

depths measurements at 56 locations and 47 salinity samples.

Moreover, groundwater table depths at the monitoring wells

of in groups C and D (Fig. 3) were regularly measured once

every 10 days during 2001–03 and 2000–09, respectively,

by Hongwei Yang and Maoyun Qiao (Ejina Water Affairs Bu-

reau). Data from all of the wells in group D were used later to

investigate the relationship between vegetation dynamics and

groundwater changes, except for wells d2 and d7, where con-

tinuous measurements are absent.

The NDVI derived from satellite sensor data at high

temporal resolutions have been verywidely used to investigate

vegetation dynamics, particularly for arid and semi-arid areas

(Fabricante et al. 2009; Jarlan et al. 2008; McGwire et al. 2000;

Pouliot et al. 2009). In this study, NDVIs from the Moderate

Resolution Imaging Spectroradiometer/Terra L3 16-day com-

posite at 250m resolution (i.e. MOD13Q1) were used to derive

the seasonally averaged NDVIs (SAN) over the period of April–

October. The SAN values were then used to indicate the an-

nual vegetation state and investigate the temporal variation

of the vegetation changes.

The SAN time series data were then compared with the

mean groundwater table depth (MGTD) for 2000–08. To

represent the status of the groundwater environment, the

MGTD was calculated by averaging the 10-day records of

the wells in group D over the period of April–October,

which. For the investigation of relationships between

vegetation dynamics and groundwater changes, SANs from

the cells at which the wells are located were extracted for

each year. This corresponds to an area of 250 3 250 m

Figure 1: location of study area and water channels.
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from which the SAN values were compared with the MGTD

data.

The Mann–Kendall method (Hipel and Mcleod 2005; Mann

1945) was used to test for trends in the SAN time series. A sig-

nificance level of a = 0.05 was adopted. The spatial distribution

of groundwater table depth and salinity was interpolated using

the simple kriging method in ArcGIS 9.2. The relationship

between MGTD and SAN was determined using Pearson’s

correlation (Swan and Sandilands 1995).

RESULTS AND DISCUSSION
Vegetation dependence on groundwater

Groundwater is a key factor controlling the vegetation dynam-

ics in this arid area. Additionally, fluctuations of the ground-

water table were often accompanied by enhanced salinity of

groundwater, which might offset vegetation restoration

benefiting from alleviated water stress through the increase

in salt stress to plants (Chen et al. 2004). As the vegetation

in desert is very sparse, our study only took into account

the vegetation in the oasis region. Based on the fact that

the NDVI for the oasis is much higher than that in the desert

during growing seasons, the pixels with mean SAN values

>0.077 during 2000–09 were treated as oasis regions and

the other pixels were designated as desert regions. The oasis

region in the study area covers ;2 129 km2 and consists of

two regions, which locate along the West River and the East

River, respectively. Several narrow strip-shaped oases within

these regions have formed along five relatively independent

tributaries, including the Longzi River, the Andu River and

the Nolin River. These green belts run in the same north–south

direction and serve as multilevel shelters to prevent sand-

storms from the northwest. A flat-shaped oasis, which is dif-

ferent from the strip-shaped oases in other regions of the

study area, forms in the lower East River, where the tributaries

spread radially.

According to the field investigation, the predominant natural

vegetation in the oasis includes P. euphratica, T. ramosissima,

H. ammodendron and S. alopecuroides. These species play a very

important role in maintaining the ecosystem function in the

arid area because of their tolerance to severe drought and to

high salinity and alkalinity in soils (Chen et al. 2004). Previous

studies have suggested that the accumulation of proline in indi-

viduals of P. euphratica, which is the main community-building

species of the desert riparian forests, is closely related to the

change of the groundwater level gradient under drought stress

(Chen et al. 2003, 2008). In the lower Tarim River, the ground-

water stress depth for normal growth and the critical depth for

the survival of P. euphratica are below 4.5 and 9–10 m, respec-

tively (Chen 2004; Chen et al. 2003, 2004). In the study area, the

depth of the groundwater table is mainly controlled by the to-

pography and groundwater run-off features (Xie 1980). Accord-

ing to the field investigation conducted in July–August 2009,

the measured groundwater table depth ranged from 0.80 to

8.29 m, with an average value of 3.33 m and a median of

2.90 m. As shown in Fig. 4, the groundwater table depth varies

from 2 to 4 m, with an exception in the northeastern area,

where the groundwater table depth was more than 4 m. There-

fore, the current groundwater table depth in the majority of the

area (2–4 m) is sufficient for the growth of desert riparian veg-

etation, such as P. euphratica.

Groundwater salinity, which is another important factor

that directly or indirectly affects plant growth, varied from

1.2% to 9.8% during the study period. The coefficient of var-

iation (CV), as a statistical measure commonly used for com-

paring the diversity of a series of numbers, represents the ratio

of the standard deviation to the mean (Swan and Sandilands

1995). The CV of the groundwater salinity was 0.58, which

indicates a relatively high degree of variation. As shown in

Fig. 4, the groundwater exhibits a significant zonation in sa-

linity along the direction of regional flow from the recharge

to the discharge area (Wen et al. 2005). The low-salinity

groundwater zone (S < 3%) is mainly distributed in the fore-

land of diluvial fan, which suggests improved recharge and cy-

cling conditions. Groundwater in this area is characterized as

the Cl–HCO3–Mg–Na water type. The medium-salinity

Figure 2: annual run-off into the lower Heihe River Basin.
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groundwater zone (3% < S <5%) is mainly distributed in the

central region and northern plain of the Ejina Basin, and

groundwater in this area is characterized as the SO4–Cl–Mg–

Na water type. The high-salinity groundwater zone (S >

5%) is distributed to the northeast of Dalaikubu and overlaps

with the Quaternary sedimentary center. This area has a low

elevation and is a discharge sector of the groundwater system

in the Ejina Basin. In this area, mineral dissolution and

evapotranspiration are the main mechanisms of salt accumu-

lation in groundwater (Pang et al. 2010; Wen et al. 2005).

Environmental flows have resulted in a distinctive zoning pat-

tern in groundwater salinity. Riparian vegetation is mainly dis-

tributed in the areas with lower salinity due to modern

groundwater recharge.

Relationship between vegetation changes and

groundwater table fluctuations

Because the percentage of cultivated land in the grid cells as-

sociated with the wells was not beyond 15% (Table 1), the

SAN mostly reflected the status of natural vegetation in these

Figure 3: location of groundwater sampling.
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areas. Pearson’s correlation is used to find a correlation be-

tween two or more continuous variables. Values of the corre-

lation coefficient (r) range from�1 to +1. The absolute value of

the correlation coefficient indicates the strength of the linear

relationship between the variables, with larger absolute values

indicating stronger relationships. In geosciences, an absolute

value of correlation coefficient >0.7 (i.e. jrj > 0.7) suggests

strong correlation, whereas jrj = 0.5–0.7 indicates a moderate

correlation (Swan and Sandilands 1995). According to Table 2,

SAN correlates with MGTD, though the relationship between

them varies for different wells and periods. A strong negative

correlation (r < �0.7) between SAN and MGTD was found for

wells d1 and d4 and a moderate negative correlation (�0.7 < r

< �0.5) was found for wells d9 and d5 (group A in Fig. 5),

which indicated that the vegetation got better or worse with

the groundwater table rising or declining, respectively. It is

found that the apparent response of vegetation to groundwater

fluctuations takes place when the groundwater table depth

varies between 1.8 and 3.5 m (Fig. 5). This is consistent with

results of previous field studies: ;2–4 m has been found to be

the range of the functional groundwater table depth for veg-

etation functioning (Chen 2004; Chen et al. 2008).

It should be pointed out that there was no notable relation-

ship (jrj < 0.5) between SAN and MGTD for wells d11, d10

and d8 (group B in Fig. 5), although the groundwater table

depth for these wells fluctuated in the range of 2–4 m. The dis-

agreement of a strong correlation between vegetation change

and groundwater dynamics at these sites showed that the

fluctuations of the groundwater table was no longer the dom-

inant factor driving vegetation changes, although the ground-

water table depth is within the optimal range for vegetation

growth. However, from Landsat ETM images, it could be

observed that wells d8, d10 and d11 are located near natural

rivers and are frequently submerged by surface water every

year. The exposure to surface water would lead to rapid

changes of the grassland, which contributes to the interannual

variability in SAN.

The groundwater table depths at wells d6 and d12 (after

2003) were generally lower than 4.5 m with a declining trend,

whereas the SAN showed an increasing trend. This indicates

that when the groundwater table is lower than a critical level,

its influence on vegetation is very limited. It should be men-

tioned that a concrete-lined channel has replaced the previous

natural river near well d6 in recent years. The building of the

channel prevented the streamflow from recharging the

groundwater and caused the groundwater level to decrease,

Table 1: the percentage of cultivated land in pixels (P, %)

involving the wells

Well No. d1 d3 d4 d5 d6 d8 d9 d10 d11 d12

P, % 0 0 10 10 5 10 10 0 0 15

Figure 4: spatial variation of groundwater table depth (H, m) (A) and salinity (S, %) (B), 2009.
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though it irrigated nearby vegetation through the lateral chan-

nels extending from it. For well 12, the derelict land in its grid

cell was reclaimed after 2004 due to irrigation during the

implementation of EFCP.

Changes in groundwater table and salinity after the

implementation of EFCP

In the arid area, vegetation degradation is mainly related to the

reduced recharge to riparian groundwater, a decreased

groundwater table and increased salinity of the groundwater

system (Pang et al. 2010). Due to changes in surface hydrolog-

ical processes and groundwater exploitation, the groundwater

table in the lower Heihe River hasmarkedly declined in the last

decades (Su et al. 2007). However, this situation changed fol-

lowing the implementation of EFCP in 2000. The groundwater

table in the upper basin (d1, d3 and d10 in Fig. 3) increased

continuously during the implementation of EFCP (Fig. 6);

however, the groundwater table in the lower basin (wells

d6 and d12 in Fig. 3) exhibited an obvious decreasing trend

due to water pumping for seasonal irrigation (Fig. 6), which

is quite different from the conditions in the upper basin. It

should be mentioned that the groundwater table showed

intensive fluctuations in the first 2 years (2000–01) after

the implementation of EFCP; e.g. 2–3 m fluctuations were

observed for well d8.

The response of the groundwater table to environmental

flows is also determined by the distance to the river. For ex-

ample, the groundwater table depths ranged from 1.19 to

1.85 m in well c2, 2.94–3.47 m in well c3, 2.41–3.29 m in well

c4 and 1.79–2.41 m in well c7 along Sec 1 (Fig. 3) during the

period from 2002 to 2003. The groundwater table depths in

wells c2 (�x = 1.61 m, s = 0.23 m, where �x is the mean of

the groundwater table depth and s is the standard deviation

of the groundwater table depth) and c7 (�x = 2.01 m, s =

0.18 m) were much lower than in wells c3 (�x = 3.23 m, s =

0.15 m) and c4 (�x = 3.02 m, s = 0.17 m) (Fig. 7), which indi-

cated that environmental flowsmostly affected the groundwa-

ter in areas adjacent to the river. During this period, the

groundwater table depth varied from 1.17 to 2.46 m in well

c14, from 2.81 to 3.32 m in well c13 and from 3.07 to 3.54

m in well c12 along Sec 2 (Fig. 7). The groundwater table fluc-

tuations in well c14 (1.29 m) were much greater than in wells

c13 (0.51 m) and c12 (0.47 m) (Fig. 7), which indicated a rapid

response of the groundwater along the river, and the response

in the groundwater table is reduced with increasing transverse

distance away from the river.

The spatial patterns of groundwater table depths after EFCP

are evaluated. Fig. 8 shows the difference in the groundwater

table depth between September 2001 and September 2003, as

well as between September 2003 and July–August 2009. As

shown in Fig. 8, the changes in the groundwater table depth

between 2001 and 2003 varied from �6 (increased) to +2 m

(declined), which indicated a great influence of environmental

flows on groundwater dynamics. During this period, the

groundwater table increased in most of the area, particularly

in the northeastern region of Dalaikubu. However, a slight de-

cline in the groundwater table along the river was caused in

non-infiltrated areas as a result of the construction of drainage

channels (Guo et al. 2009). Comparing the groundwater table

depth between 2003 and 2009, it is clear that the groundwater

table increased by 0–1 m in general, although declines in the

groundwater level persisted in areas characterized by the

construction of drainage channels and irrigation areas

with groundwater withdrawals (i.e. in northeastern region

of Dalaikubu) (Fig. 8).

Generally, the regional increase of the groundwater table in

the study area remained following the implementation of

EFCP. However, irregular fluctuations in the groundwater ta-

ble depth were observed in the irrigation areas. The ground-

water table in these areas was significant increasing during

the first 2–3 years of water diversion and then slightly de-

clined. Water withdrawals for irrigation and the construction

of drainage channels to transport water to the East Juyan Lake

and the Ejina Oasis (Guo et al. 2009), exert an important in-

fluence on the groundwater regime, including on the dynam-

ics of groundwater recharge.

Salinity is one of the most important factors affecting the

growth of vegetation. Vegetation degradation in arid regions

is related to the declination in water table, as well as the

increase in salinity in the groundwater system (Pang et al.

2010). The spatial patterns of groundwater salinity in the study

area were compared in terms of spatial distribution between

July–August 2009 and September 2001. As shown in Fig. 9,

the salinity level in the groundwater increased by a total of

0–4% during the implementation of EFCP. This increasing

groundwater salinity resulted from the dissolving action that

occurs in the process of groundwater flowing from recharge

to discharge areas. Salt dissolution, deposition, ion exchange,

evaporation and other chemical and physical reactions tend to

cause groundwater to evolve from a dilute calcium bicarbonate

type in recharge areas toward a more concentrated sodium

chloride or calcium chloride type in discharge areas (Feng

Table 2: Pearson’s correlation matrices showing marked correlations (r) and P-values between Mean Groundwater Table Depth and

Seasonally Averaged NDVI

Well No. Well d1 Well d3 Well d4 Well d5 Well 6 Well 8 Well d9 Well 10 Well 11 Well d12

r �0.86 0.56 �0.71 �0.52 0.56 0.13 �0.66 �0.16 �0.25 0.03

P-value 0.003 0.145 0.031 0.148 0.115 0.742 0.054 0.682 0.518 0.934
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Figure 5: relationship between the groundwater table depth and SAN.
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et al. 2004; Si et al. 2009; Wen et al. 2005; Zhu et al. 2009). In

addition, decades of irrigation have resulted in fluctuations of

the groundwater table, which has accelerated salt accumula-

tion in the groundwater and surface soils. Moreover, the inap-

propriate exploitation of groundwater resources has, to some

extent, exacerbated the process of the salinization of ground-

water in this region (Guo et al. 2009; Su et al. 2007). Mixing

environmental flows with groundwater could also lead to

a controlling influence on salinization process of groundwater,

although compared to groundwater, environmental flows

generally have a lower salinity (Wen et al. 2005).

The spatial response of vegetation dynamics to the

implementation of EFCP

From 2000 to 2009, the areas with increasing trends, no trend

and decreasing trends occupied 89.8, 1 138.8 and 901.1 km2,

representing 4.2%, 53.5% and 42.3% of the whole oasis

region (Fig. 10). The large area characterized by increasing

trends and no trend for SAN showed that the condition of veg-

etation had been improved in general. The areas with increas-

ing trends were distributed along natural rivers (e.g. East and

West Rivers) and usually appeared within 500–1 000 m away

from these rivers. Meanwhile, many rivers recovered after

2000, including the lower East and West Rivers, which has

been verified by local governments and can be detected on

Landsat TM images. This should be attributed to the guidelines

of EFCP, which specified conveying a certain amount of water

to the lower Heihe River. With the recovery of rivers, the con-

dition of the groundwater environment has improved, as

shown by the increases of the groundwater level observed

in many locations, as mentioned above. It is clear that the

universal improvement of groundwater conditions is the most

crucial factor for vegetation restoration.

Decreasing trends of the SAN, specifically vegetation degra-

dation, mainly appeared in several floodplains along the West

River, the Nolin River and the East River. Field investigations

showed that the deterioration of the water environment

around these floodplains occurred in recent years. As men-

tioned above, to convey water in the Heihe River as far as pos-

sible, some tributaries have been artificially cut off in the upper

West River, and many channels have been built to replace

previous natural rivers along the entire extension of the study

area. These measures have directly prevented surface water

from reaching nearby floodplains and recharging groundwater

Figure 6: groundwater fluctuations in monitoring wells from 2000 to 2009.
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as it did prior to channel construction, though this situation

mainly occurred in the upper and middle West River and

the lower East River. Additionally, they have indirectly de-

graded the water environment far from the channels. For ex-

ample, the Dongganqu, a concrete-lined channel, gradually

replaced the East River to become the main water channel

in this region after 2003, before entering the Ejina Basin. Be-

cause the Dongganqu was built across the upper reach of the

Nolin River, the Nolin River was cut off and completely dried

up. It was certain that the reduction or vanishing of surface

water remarkably decreased the groundwater recharge in this

area. The deterioration of the local groundwater environment

further resulted in this vegetation degradation.

CONCLUSION

The vegetation dynamics induced by groundwater fluctuations

were investigated through the analysis of long-term

groundwater dynamics and satellite images during the imple-

mentation of EFCP in the lower Heihe River in northwestern

China. The following conclusions can be drawn from this study.

1) Under the regional groundwater flow systems, the ground-

water table depth in the study area varied from 2 to 4 m,

except in regions of irrigated farmland (up to 6–8 m). Along

the groundwater flow path, the salinity level in the ground-

water increased continuously from 1.2% to 9.8%.

2) A notable correlation between the vegetation status and the

groundwater table was identified when the latter fluctuated

between 1.8 and 3.5 m. When the groundwater table depth

was more than 5 and 6 m, the vegetation conditions did not

show an obvious response to groundwater table fluctua-

tions.

3) After environment flow controls were implemented for the

lower Heihe River, the groundwater table fluctuated signif-

icantly inmost of the study area, with spatial heterogeneity.

Generally, the groundwater table rose by;0.5 m in the up-

per and 1.5 m in the lower Ejina Basin. Fluctuations in the

groundwater table caused the temporal and spatial variabil-

ity of salinity, which increased throughout the study area by

0–4%.

4) Implementation of EFCP led to universal vegetation

recovery, though they have also caused local vegetation

Figure 7: groundwater fluctuations in transects 1 and 2 from 2002 to 2003.
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Figure 8: spatial variation of changes in groundwater table depth (DH, m) between 2001 and 2003 (A) and between 2003 and 2009 (B).

Figure 9: spatial variation of changes in groundwater salinity (DS, m)

between 2001 and 2009.

Figure 10: the spatial distribution of vegetation change analyses in

2000–09.
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degradation. The areas of vegetation restoration were

mainly distributed in riparian areas within 500–1 000 m

of the natural rivers, where the groundwater table depth

varied from 2 to 4 m, and salinity was <5%.

After the implementation of EFCP in an arid area, the accu-

mulation of groundwater salinity will eventually offset vege-

tation restoration benefiting from alleviated water stress

through the increase in salt stress to plants, despite the fact that

the groundwater table might be raised. In this case, the mech-

anism of vegetation responses to groundwater fluctuations,

both in the water table and in the salinity, appears to be par-

ticularly complicated. Therefore, there is a need for further

scientific research with the aim of maintaining salt and water

balances for the purpose of vegetation restoration.
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